Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Transfusion ; 62(10): 1997-2011, 2022 10.
Article in English | MEDLINE | ID: covidwho-2019638

ABSTRACT

BACKGROUND: Efficacy of donated COVID-19 convalescent plasma (dCCP) is uncertain and may depend on antibody titers, neutralizing capacity, timing of administration, and patient characteristics. STUDY DESIGN AND METHODS: In a single-center hypothesis-generating prospective case-control study with 1:2 matched dCCP recipients to controls according to disease severity at day 1, hospitalized adults with COVID-19 pneumonia received 2 × 200 ml pathogen-reduced treated dCCP from 2 different donors. We evaluated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies in COVID-19 convalescent plasma donors and recipients using multiple antibody assays including a Coronavirus antigen microarray (COVAM), and binding and neutralizing antibody assays. Outcomes were dCCP characteristics, antibody responses, 28-day mortality, and dCCP -related adverse events in recipients. RESULTS: Eleven of 13 dCCPs (85%) contained neutralizing antibodies (nAb). PRT did not affect dCCP antibody activity. Fifteen CCP recipients and 30 controls (median age 64 and 65 years, respectively) were enrolled. dCCP recipients received 2 dCCPs from 2 different donors after a median of one hospital day and 11 days after symptom onset. One dCCP recipient (6.7%) and 6 controls (20%) died (p = 0.233). We observed no dCCP-related adverse events. Transfusion of unselected dCCP led to heterogeneous SARS CoV-2 antibody responses. COVAM clustered dCCPs in 4 distinct groups and showed endogenous immune responses to SARS-CoV-2 antigens over 14-21 days post dCCP in all except 4 immunosuppressed recipients. DISCUSSION: PRT did not impact dCCP anti-virus neutralizing activity. Transfusion of unselected dCCP did not impact survival and had no adverse effects. Variable dCCP antibodies and post-transfusion antibody responses indicate the need for controlled trials using well-characterized dCCP with informative assays.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Case-Control Studies , Humans , Immunization, Passive , Middle Aged , COVID-19 Serotherapy
2.
Transfusion ; 62(8): 1681-1682, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1992914
3.
Nat Commun ; 12(1): 6, 2021 01 04.
Article in English | MEDLINE | ID: covidwho-1007633

ABSTRACT

The current practice for diagnosis of COVID-19, based on SARS-CoV-2 PCR testing of pharyngeal or respiratory specimens in a symptomatic patient at high epidemiologic risk, likely underestimates the true prevalence of infection. Serologic methods can more accurately estimate the disease burden by detecting infections missed by the limited testing performed to date. Here, we describe the validation of a coronavirus antigen microarray containing immunologically significant antigens from SARS-CoV-2, in addition to SARS-CoV, MERS-CoV, common human coronavirus strains, and other common respiratory viruses. A comparison of antibody profiles detected on the array from control sera collected prior to the SARS-CoV-2 pandemic versus convalescent blood specimens from virologically confirmed COVID-19 cases demonstrates near complete discrimination of these two groups, with improved performance from use of antigen combinations that include both spike protein and nucleoprotein. This array can be used as a diagnostic tool, as an epidemiologic tool to more accurately estimate the disease burden of COVID-19, and as a research tool to correlate antibody responses with clinical outcomes.


Subject(s)
Antibodies, Viral/blood , Antigens, Viral/blood , COVID-19/immunology , SARS-CoV-2/immunology , Antibodies, Viral/immunology , Antigens, Viral/immunology , COVID-19/blood , COVID-19/diagnosis , COVID-19 Testing , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Microarray Analysis/methods , Middle East Respiratory Syndrome Coronavirus/immunology , Neutralization Tests , Severe acute respiratory syndrome-related coronavirus/immunology , Spike Glycoprotein, Coronavirus/immunology
4.
Transfusion ; 60(6): 1319-1331, 2020 06.
Article in English | MEDLINE | ID: covidwho-116543

ABSTRACT

BACKGROUND: The INTERCEPT Blood System pathogen reduction technology (PRT), which uses amotosalen and ultraviolet A light treatment (amotosalen/UV-PRT), inactivates pathogens in plasma and platelet components (PCs). This review summarizes data describing the inactivation efficacy of amotosalen/UVA-PRT for a broad spectrum of viruses and parasites. METHODS: Twenty-five enveloped viruses, six nonenveloped viruses (NEVs), and four parasites species were evaluated for sensitivity to amotosalen/UVA-PRT. Pathogens were spiked into plasma and PC at high titers. Samples were collected before and after PRT and assessed for infectivity with cell cultures or animal models. Log reduction factors (LRFs) were defined as the difference in infectious titers before and after amotosalen/UV-PRT. RESULTS: LRFs of ≥4.0 log were reported for 19 pathogens in plasma (range, ≥4.0 to ≥7.6), 28 pathogens in PC in platelet additive solution (PC-PAS; ≥4.1-≥7.8), and 14 pathogens in PC in 100% plasma (PC-100%; (≥4.3->8.4). Twenty-five enveloped viruses and two NEVs were sensitive to amotosalen/UV-PRT; LRF ranged from >2.9 to ≥7.6 in plasma, 2.4 or greater to greater than 6.9 in PC-PAS and >3.5 to >6.5 in PC-100%. Infectious titers for four parasites were reduced by >4.0 log in all PC and plasma (≥4.9 to >8.4). CONCLUSION: Amotosalen/UVA-PRT demonstrated effective infectious titer reduction for a broad spectrum of viruses and parasites. This confirms the capacity of this system to reduce the risk of viral and parasitic transfusion-transmitted infections by plasma and PCs in various geographies.


Subject(s)
Blood Platelets , Blood Safety , Disinfection , Furocoumarins/pharmacology , Parasites , Plasma , Ultraviolet Rays , Virus Inactivation , Animals , Blood Platelets/parasitology , Blood Platelets/virology , Humans , Plasma/parasitology , Plasma/virology , Virus Inactivation/drug effects , Virus Inactivation/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL